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Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family 

Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China. 
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Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and 

Zika virus disease, present a major threat to public health
1–3

. Despite intense research 

efforts, how, when and where new diseases appear are still the source of considerable 

uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei 

province, China. As of 25 January 2020, at least 1,975 cases had been reported since the 

first patient was hospitalized on 12 December 2019. Epidemiological investigations have 

suggested that the outbreak was associated with a seafood market in Wuhan. Here we 
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study a single patient who was a worker at the market and who was admitted to Wuhan 

Central Hospital on 26 December 2019 while experiencing a severe respiratory syndrome 

that included fever, dizziness and a cough. Metagenomic RNA sequencing
4
 of a sample of 

bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the 

family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also 

been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome 

(29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide 

similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus 

Sarbecovirus) that had previously been found in bats in China
5
. This outbreak highlights 

the ongoing ability of viral spill-over from animals to cause severe disease in humans. 

The patient studied was a 41-year-old man with no history of hepatitis, tuberculosis or diabetes. 

He was admitted to and hospitalized in Wuhan Central Hospital on 26 December 2019, 6 days 

after the onset of disease. The patient reported fever, chest tightness, unproductive cough, pain 

and weakness for 1 week on presentation (Table 1). Physical examination of cardiovascular, 

abdominal and neurological characteristics was that these were normal. Mild lymphopenia 

(defined as less than 9 × 10
5
 cells per ml) was observed, but white blood-cell and blood platelet 

counts were normal in a complete blood count test. Elevated levels of C-reactive protein 

(41.4 mg l
−1

 of blood; reference range, 0–6 mg l
−1

) were observed and the levels of aspartate 

aminotransferase, lactic dehydrogenase and creatine kinase were slightly elevated in blood 

chemistry tests. The patient had mild hypoxaemia with oxygen levels of 67 mm Hg as 

determined by an arterial blood gas test. On the first day of admission (day 6 after the onset of 

disease), chest radiographs were abnormal with air-space shadowing such as ground-glass 

opacities, focal consolidation and patchy consolidation in both lungs (Extended Data Fig. 1). 

Computed-tomography scans of the chest revealed bilateral focal consolidation, lobar 

consolidation and patchy consolidation, especially in the lower lung (Extended Data Fig. 1a–d). 

A chest radiograph revealed a bilateral diffuse patchy and fuzzy shadow on day 5 after 

admission (day 11 after the onset of disease) (Extended Data Fig. 1e). Preliminary aetiological 

investigations excluded the presence of influenza virus, Chlamydia pneumoniae and 

Mycoplasma pneumoniae using commercial pathogen antigen-detection kits and this was 
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confirmed by PCR. Other common respiratory pathogens, including human adenoviruses, also 

tested negative by quantitative PCR (qPCR) (Extended Data Fig. 2). Although a combination of 

antibiotic, antiviral and glucocorticoid therapy was administered, the patient exhibited 

respiratory failure and was given high-flow non-invasive ventilation. The condition of the 

patient did not improve after 3 days of treatment and he was admitted to the intensive care unit. 

The patient was transferred to another hospital in Wuhan for further treatment 6 days after 

admission. 

Epidemiological investigations by the Wuhan Center of Disease Control and Prevention 

revealed that the patient worked at a local indoor seafood market. Notably, in addition to fish 

and shell fish, a variety of live wild animals, including hedgehogs, badgers, snakes and birds 

(turtledoves), were available for sale in the market before the outbreak began, as well as animal 

carcasses and animal meat. No bats were available for sale. While the patient might have had 

contact with wild animals at the market, he recalled no exposure to live poultry. 

To investigate the possible aetiological agents associated with this disease, we collected 

bronchoalveolar lavage fluid (BALF) and performed deep meta-transcriptomic sequencing. 

The clinical specimen was handled in a biosafety level 3 laboratory at the Shanghai Public 

Health Clinical Center. Total RNA was extracted from 200 μl of BALF and a 

meta-transcriptomic library was constructed using pair-end (150-bp reads) sequencing using an 

Illumina MiniSeq as previously described
4,6–8

. In total, we generated 56,565,928 sequence 

reads that were de novo assembled and screened for potential aetiological agents. Of the 

384,096 contigs assembled by Megahit
9
, the longest (30,474 nucleotides (nt)) had a high 

abundance and was closely related to a bat SARS-like coronavirus (CoV) isolate—bat 

SL-CoVZC45 (GenBank accession number MG772933)—that had previously been sampled in 

China, with a nucleotide identity of 89.1% (Supplementary Tables 1, 2). The genome sequence 

of this virus, as well as its termini, were determined and confirmed by reverse-transcription 

PCR (RT–PCR)
10

 and 5′/3′ rapid amplification of cDNA ends (RACE), respectively. This virus 

strain was designated as WH-Human 1 coronavirus (WHCV) (and has also been referred to as 

‘2019-nCoV’) and its whole genome sequence (29,903 nt) has been assigned GenBank 

accession number MN908947. Remapping the RNA-sequencing data to the complete genome 
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of WHCV resulted in an assembly of 123,613 reads, providing 99.99% genome coverage at a 

mean depth of 6.04× (range, 0.01–78.84×) (Extended Data Fig. 3). The viral load in the BALF 

sample was estimated by qPCR to be 3.95 × 10
8
 copies per ml (Extended Data Fig. 4). 

The viral genome organization of WHCV was determined by sequence alignment to 

two representative members of the genus Betacoronavirus: a coronavirus associated with 

humans (SARS-CoV Tor2, GenBank accession number AY274119) and a coronavirus 

associated with bats (bat SL-CoVZC45, GenBank accession number MG772933). The 

un-translational regions and open-reading frame (ORF) of WHCV were mapped based on this 

sequence alignment and ORF prediction. The WHCV viral genome was similar to these two 

coronaviruses (Fig. 1 and Supplementary Table 3). The order of genes (5′ to 3′) was as follows: 

replicase ORF1ab, spike (S), envelope (E), membrane (M), nucleocapsid (N). WHCV has 5′ and 

3′ terminal sequences that are typical of betacoronaviruses, with 265 nt at the 5′ terminal end 

and 229 nt at the 3′ terminal end. The predicted replicase ORF1ab gene of WHCV is 21,291 nt 

in length and contained 16 predicted non-structural proteins (Supplementary Table 4), followed 

by (at least) 13 downstream ORFs. Additionally, WHCV shares a highly conserved domain 

(LLRKNGNKG: amino acids 122–130) in nsp1 with SARS-CoV. The predicted S, ORF3a, E, 

M and N genes of WHCV are 3,822, 828, 228, 669 and 1,260 nt in length, respectively. In 

addition to these ORF regions, which are shared by all members of the subgenus Sarbecovirus, 

WHCV is similar to SARS-CoV in that it carries a predicted ORF8 gene (with a length of 

366 nt) that is located between the M and N ORF genes. The functions of WHCV ORFs were 

predicted based on those of known coronaviruses and are described in Supplementary Table 5. 

In a manner similar to SARS-CoV Tor2, a leader transcription regulatory sequence (TRS) and 

nine putative body TRSs could be readily identified upstream of the 5′ end of the ORF in 

WHCV, and the putative conserved TRS core sequence appeared in two forms—ACGAAC or 

CUAAAC (Supplementary Table 6). 

To determine the evolutionary relationships between WHCV and previously identified 

coronaviruses, we estimated phylogenetic trees on the basis of the nucleotide sequences of the 

whole-genome sequence, the non-structural protein genes ORF1a and ORF1b, and the main 

structural proteins encoded by the S, E, M and N genes (Fig. 2 and Extended Data Fig. 5). In all 



Publisher: NPG; Journal: Nature: Nature; Article Type: Biology article 

 ms: 2020-01-00274B 

Page 5 of 19 

phylogenies, WHCV clustered with members of the subgenus Sarbecovirus, including the 

SARS-CoV that was responsible for the global SARS pandemic
1,2

 of 2002–2003, as well as a 

number of SARS-like coronaviruses that have been obtained from bats
5,11–13

. However, WHCV 

changed topological position within the subgenus Sarbecovirus depending on which gene was 

used, which suggests that recombination has occurred in this group of viruses in the past (Fig. 2 

and Extended Data Fig. 5). Specifically, in the S gene tree (Extended Data Fig. 5), WHCV was 

most closely related to the bat coronavirus SL-CoVZC45 with 82.3% amino acid identity (and 

around 77.2% amino acid identity to SARS-CoV; Supplementary Table 3) whereas in the 

ORF1b phylogeny, WHCV fell in a basal position within the subgenus Sarbecovirus (Fig. 2). 

This topological division, which probably reflects recombination among the bat sarbecoviruses, 

was also observed in the phylogenetic trees estimated for conserved domains in the replicase 

polyprotein pp1ab (Extended Data Fig. 6). 

To better understand the potential of WHCV to infect humans, the receptor-binding 

domain (RBD) of its spike protein was compared with those of SARS-CoVs and bat SARS-like 

CoVs. The RBD sequences of WHCV were more closely related to those of SARS-CoVs 

(73.8–74.9% amino acid identity) and SARS-like CoVs, including strains Rs4874, Rs7327 and 

Rs4231 (75.9–76.9% amino acid identity), that are able to use the human ACE2 receptor for 

cell entry
11

 (Supplementary Table 7). In addition, the RBD of the spike protein from WHCV 

was only one amino acid longer than the RBD of the spike protein from SARS-CoV (Extended 

Data Fig. 7a). By contrast, other bat SARS-like CoVs, including the Rp3 strain that cannot bind 

to human ACE2
14

, had amino acid deletions at positions 433–437 and 460–472 compared with 

the sequence in SARS-CoVs (Extended Data Fig. 7a). The previously determined
15

 crystal 

structure of the RBD of the spike protein of SARS-CoV complexed with human ACE2 (Protein 

Data Bank (PDB) 2AJF) revealed that regions 433–437 and 460–472 directly interact with 

human ACE2 and hence may be important in determining species specificity (Extended Data 

Fig. 7b). We predicted the three-dimensional protein structures of the RBD domains of the 

spike protein of WHCV, Rs4874 and Rp3 by protein homology modelling using the 

SWISS-MODEL server and compared them to the crystal structure of RBD domain of the spike 

protein of SARS-CoV (PDB 2GHV) (Extended Data Fig. 7c–f). In accordance with the 
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sequence alignment, the predicted protein structures of the RBD domains of WHCV and 

Rs4874 were closely related to that of SARS-CoV and different from the predicted structure of 

the RBD domain from Rp3. In addition, the N terminus of the spike protein of WHCV is more 

similar to that of SARS-CoV than other human coronaviruses (HKU1 and OC43) (Extended 

Data Fig. 8) that can bind to sialic acid
16

. In summary, the high similarities of the amino acid 

sequences and predicted protein structures of the RBD domains of WHCV and SARS-CoV 

suggest that WHCV may efficiently use human ACE2 as a receptor for cellular entry, which 

could potentially facilitate human-to-human transmission
11,17,18

. 

To further characterize the putative recombination events in the evolutionary history of 

the sarbecoviruses, the whole-genome sequence of WHCV and four representative 

coronaviruses—bat SARS-like CoV Rp3, CoVZC45, CoVZXC21 and SARS-CoV 

Tor2—were analysed using the Recombination Detection Program v.4 (RDP4)
19

. Although the 

similarity plots suggested that possible recombination events had occurred between WHCV 

and SARS-CoVs or SARS-like CoVs (Extended Data Fig. 9), there was no significant evidence 

for recombination across the genome as a whole. However, some evidence for past 

recombination was detected in the S gene of WHCV, SARS-CoV and bat SARS-like CoVs 

(WIV1 and RsSHC014) (P < 3.147 × 10
−3

 to P < 9.198 × 10
−9

), for which the similarity plots 

suggested the presence of recombination breakpoints at nucleotides 1,029 and 1,652, which 

separate the S gene of WHCV into three regions (Fig. 3). In phylogenies of the nucleotide 

fragments from 1 to 1,029 and from 1,652 to the end of the sequence, WHCV was most closely 

related to bat SL-CoVZC45 and bat SL-CoVZXC21, whereas in the region of nucleotides 1,030 

to 1,651 (the RBD region) WHCV grouped with SARS-CoV and bat SARS-like CoVs (WIV1 

and RsSHC014) that are capable of direct human transmission
17,20

. Despite these recombination 

events, which seem relatively common among sarbecoviruses, there is no evidence that 

recombination has facilitated the emergence of WHCV. 

Coronaviruses are associated with a number of infectious disease outbreaks in humans, 

including SARS in 2002–2003 and Middle East respiratory syndrome (MERS) in 2012
1,21

. Four 

other coronaviruses—human coronaviruses HKU1, OC43, NL63 and 229E—are also 

associated with respiratory disease
22–25

. Although SARS-like coronaviruses have been widely 
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identified in mammals including bats since 2005 in China
10,26–28

, the exact origin of 

human-infected coronaviruses remains unclear. Here we describe a new 

coronavirus—WHCV—in the BALF from a patient who experienced severe respiratory disease 

in Wuhan, China. Phylogenetic analysis suggests that WHCV is a member of the genus 

Betacoronavirus (subgenus Sarbecovirus) that has some genomic and phylogenetic similarities 

to SARS-CoV
1
, particularly in the RBD of the spike protein. These genomic and clinical 

similarities to SARS, as well as its high abundance in clinical samples, provides evidence for an 

association between WHCV and the ongoing outbreak of respiratory disease in Wuhan and 

across the world. Although the isolation of the virus from only a single patient is not sufficient 

to conclude that it caused these respiratory symptoms, our findings have been independently 

corroborated in further patients in a separate study
29

. 

The identification of multiple SARS-like CoVs in bats have led to the idea that these 

animals act as hosts of a natural reservoir of these viruses
22,23

. Although SARS-like viruses 

have been identified widely in bats in China, viruses identical to SARS-CoV have not yet been 

documented. Notably, WHCV is most closely related to bat coronaviruses, and shows 100% 

amino acid similarity to bat SL-CoVZC45 in the nsp7 and E proteins (Supplementary Table 3). 

Thus, these data suggest that bats are a possible host for the viral reservoir of WHCV. However, 

as a variety of animal species were for sale in the market when the disease was first reported, 

further studies are needed to determine the natural reservoir and any intermediate hosts of 

WHCV. 

Note added in proof: Since this paper was accepted, the ICTV has designated the virus as 

SARS-CoV-2
30

; in addition, the WHO has released the official name of the disease caused by 

this virus, which is COVID-19
31

. 
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Table 1 | Clinical symptoms and patient data 

Characteristic Patient 

Age (years) 41 

Sex Male 

Date of illness onset 20 December 2019 

Date of admission 26 December 2019 

Signs and symptoms 
 

Fever Yes 

Body temperature (°C) 38.4 

Cough Yes 

Sputum production Yes 

Dizzy Yes 

Weakness Yes 

Chest tightness Yes 

Dyspnoea Yes 

Bacterial culture Negative 

Glucocorticoid therapy Yes 

Antibiotic therapy Cefoselis 

Antiviral therapy Oseltamivir 

Oxygen therapy Mechanical ventilation 

Fig. 1 | Genome organization of SARS and SARS-like CoVs. The organization of genes for 

WHCV, bat SL-CoVZC45 and SARS-CoV Tor2. 

Fig. 2 | Maximum likelihood phylogenetic trees of nucleotide sequences of the ORF1a, 

ORF1b, E and M genes of WHCV and related coronaviruses. a, Phylogenetic trees of 

ORF1a. b, Phylogenetic trees of ORF1b. c, Phylogenetic trees of E. d, Phylogenetic trees of M. 

EriCoV, Erinaceus coronaviruss. Numbers (>70) above or below the branches indicate 
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percentage bootstrap values for the associated nodes. The trees were mid-point rooted for 

clarity only. The scale bar represents the number of substitutions per site. 

Fig. 3 | Possible recombination events in the S gene of sarbecoviruses. a, The sequence 

similarity plot reveals two putative recombination breakpoints (black dashed lines), with their 

locations indicated at the bottom. The plot shows similarity comparisons of the S gene of 

WHCV (query) compared with the sequences of SARS-CoV Tor2 and bat SARS-like CoVs 

WIV1, Rf1 and CoVZC45. b, Phylogenies of the major parental region (1–1,028 and 1,653–

3,804) and minor parental region (1,029–1,652). Phylogenies were estimated using a maximum 

likelihood method and were mid-point rooted for clarity only. Numbers above or below the 

branches indicate percentage bootstrap values. The scale bar represents the number of 

substitutions per site. 

METHODS 

Data reporting 

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment. 

Patient information and collection of clinical data and samples 

A patient presenting with acute onset of fever (temperature over 37.5 °C), cough and chest 

tightness, who was admitted to Wuhan Central Hospital in Wuhan, China, was considered to be 

a suspected case. During admission, BALF was collected and stored at −80 °C until further 

processing. Demographic, clinical and laboratory data were retrieved from the clinical records 

of the patient. The study was reviewed and approved by the ethics committee of the National 

Institute for Communicable Disease Control and Prevention, Chinese Center for Disease 

Control and Prevention. Signed written informed consent was obtained from the patient. 

RNA library construction and sequencing 

Total RNA was extracted from the BALF sample using the RNeasy Plus Universal Mini kit 

(Qiagen) following the manufacturer’s instructions. The quantity and quality of the RNA 

solution was assessed using a Qbit machine and an Agilent 2100 Bioanalyzer (Agilent 
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Technologies) before library construction and sequencing. An RNA library was then 

constructed using the SMARTer Stranded Total RNA-Seq kit v.2 (TaKaRa). Ribosomal RNA 

depletion was performed during library construction following the manufacturer’s instructions. 

Paired-end (150-bp reads) sequencing of the RNA library was performed on the MiniSeq 

platform (Illumina). Library preparation and sequencing were carried out at the Shanghai 

Public Health Clinical Center, Fudan University, Shanghai, China. 

Data processing and identification of the viral agent 

Sequencing reads were first adaptor and quality trimmed using the Trimmomatic program
32

. 

The remaining 56,565,928 reads were assembled de novo using both Megahit (v.1.1.3)
9
 and 

Trinity (v.2.5.1)
33

 with default parameter settings. Megahit generated a total of 384,096 

assembled contigs (size range of 200–30,474 nt), whereas Trinity generated 1,329,960 contigs 

with a size range of 201–11,760 nt. All of these assembled contigs were compared (using 

BLASTn and Diamond BLASTx) against the entire non-redundant (nr) nucleotide and protein 

databases, with e values set to 1 × 10
−10

 and 1 × 10
−5

, respectively. To identify possible 

aetiological agents present in the sequencing data, the abundance of the assembled contigs was 

first evaluated as the expected counts using the RSEM program
34

 implemented in Trinity. 

Non-human reads (23,712,657 reads), generated by filtering host reads using the human 

genome (human release 32, GRCh38.p13, downloaded from Gencode) by Bowtie2
35

, were 

used for the RSEM abundance assessment. 

As the longest contigs generated by Megahit (30,474 nt) and Trinity (11,760 nt) both 

showed high similarity to the bat SARS-like coronavirus isolate bat SL-CoVZC45 and were 

found at a high abundance (Supplementary Tables 1, 2), the longer sequence 

(30,474 nt)—which covered almost the whole virus genome—was used for primer design for 

PCR confirmation and determination of the genome termini. Primers used for PCR, qPCR and 

RACE experiments are listed in Supplementary Table 8. The PCR assay was conducted as 

described previously
10

 and the complete genome termini was determined using the Takara 

SMARTer RACE 5′/3′ kit (TaKaRa) following the manufacturer’s instructions. Subsequently, 

the genome coverage and sequencing depth were determined by remapping all of the adaptor- 

and quality-trimmed reads to the whole genome of WHCV using Bowtie2
35

 and Samtools
36

. 
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The viral loads of WHCV in BALF were determined by quantitative real-time RT–PCR 

using the Takara One Step PrimeScript RT–PCR kit (Takara RR064A) following the 

manufacturer’s instructions. Real-time RT–PCR was performed using 2.5 μl RNA with 8 pmol 

of each primer and 4 pmol probe under the following conditions: reverse transcription at 42 °C 

for 10 min, 95 °C for 1 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The 

reactions were performed and detected by ABI 7500 Real-Time PCR Systems. The PCR 

product covering the Taqman primers and probe region was cloned into pLB vector using the 

Lethal Based Simple Fast Cloning Kit (TianGen) as standards for quantitative viral load test. 

Virus genome characterization and phylogenetic analysis 

For the newly identified virus genome, the potential ORFs were predicted and annotated using 

the conserved signatures of the cleavage sites recognized by coronavirus proteinases, and were 

processed in the Lasergene software package (v.7.1, DNAstar). The viral genes were aligned 

using the L-INS-i algorithm implemented in MAFFT (v.7.407)
37

. 

Phylogenetic analyses were then performed using the nucleotide sequences of various 

CoV gene datasets: (1) whole genome, (2) ORF1a, (3) ORF1b, (4) nsp5 (3CLpro), (5) RdRp 

(nsp12), (6) nsp13 (Hel), (7) nsp14 (ExoN), (8) nsp15 (NendoU), (9) nsp16 (O-MT), (10) spike 

(S) and (11) nucleocapsid (N). Phylogenetic trees were inferred using the maximum likelihood 

method implemented in the PhyML program (v.3.0)
38

, using the generalized time reversible 

substitution model and subtree pruning and regrafting branch swapping. Bootstrap support 

values were calculated from 1,000 pseudo-replicate trees. The best-fitting model of nucleotide 

substitution was determined using MEGA (v.5)
39

. Amino acid identities among sequences were 

calculated using the MegAlign program implemented in the Lasergene software package (v.7.1, 

DNAstar). 

Genome recombination analysis 

Potential recombination events in the history of the sarbecoviruses were assessed using both the 

RDP4
19

 and Simplot (v.3.5.1)
40

. The RDP4 analysis was conducted based on the complete 

genome (nucleotide) sequence, using RDP, GENECONV, BootScan, maximum chi square, 

Chimera, SISCAN and 3SEQ methods. Putative recombination events were identified with a 
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Bonferroni corrected P-value cut-off of 0.01. Similarity plots were inferred using Simplot to 

further characterize potential recombination events, including the location of possible 

breakpoints. 

Analysis of the RBD domain of the spike protein of WHCV 

An amino acid sequence alignment of RBD sequences from WHCV, SARS-CoVs and bat 

SARS-like CoVs was performed using MUSCLE
41

. The predicted protein structures of the 

RBD of the spike protein were estimated based on target–template alignment using ProMod3 

on SWISS-MODEL server (https://swissmodel.expasy.org/). The sequences of the RBD 

domains spike of WHCV, Rs4874 and Rp3 were searched by BLAST against the primary 

amino acid sequence contained in the SWISS-MODEL template library (last update, 9 January 

2020; last included PDB release, 3 January 2020). Models were built based on the target–

template alignment using ProMod3. The global and per-residue model quality was assessed 

using the QMEAN scoring function
42

. The PDB files of the predicted protein structures were 

displayed and compared with the crystal structures of the spike RBD of SARS-CoV (PDB 

2GHV)
43

 and the crystal of structure of the spike RBD of SARS-CoV complexed with human 

ACE2 (PDB 2AJF)
15

. 

Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary 

linked to this paper. 

Data availability 

Sequence reads generated in this study are available from the NCBI Sequence Read Archive 

(SRA) database under BioProject accession number PRJNA603194. The complete genome 

sequence of WHCV has been deposited in GenBank under accession number MN908947. 
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Extended Data Fig. 1 | Chest radiographs of the patient. a–d, Computed-tomography scans 

of the chest were obtained on the day of admission (day 6 after the onset of disease). Bilateral 

focal consolidation, lobar consolidation and patchy consolidation were clearly observed, 

especially in the lower lung. e, A chest radiograph was obtained on day 5 after admission (day 

11 after the onset of disease). Bilateral diffuse patchy and fuzzy shadows were observed. 

Extended Data Fig. 2 | Other respiratory pathogens were not detected in the BALF 

sample by real-time RT–PCR. a–e, The BALF sample was tested for the presence of 

influenza A virus (a), the Victoria lineage of influenza B viruses (b), the Yamagata lineage of 

influenza B viruses (c), human adenovirus (d) and Chlamydia pneumoniae (e). Sample 1 was 

the BALF sample of the patient, water was used as a negative (NEG) control and positive (POS) 

control samples included plasmids covering the Taqman primers and probe regions of influenza 
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A, the Victoria and Yamagata lineages of influenza B viruses, human adenovirus and 

Chlamydia pneumoniae. 

Extended Data Fig. 3 | Mapped read count plot of the WHCV genome. The histograms 

show the coverage depth per base of the WHCV genome. The mean sequencing depth of the 

WHCV genome was 604.21 nt. 

Extended Data Fig. 4 | Quantification of WHCV in clinical samples by real-time RT–

PCR. a, Specificity evaluation of the WHCV primers. Test samples comprised clinical samples 

that were positive for at least one of the following viruses: influenza A virus (09H1N1 and 

H3N2), influenza B virus, human adenovirus, respiratory syncytial virus, rhinovirus, 

parainfluenza virus type 1–4, human bocavirus, human metapneumovirus, coronavirus OC43, 

coronavirus NL63, coronavirus 229E and coronavirus HKU1. Only the standard plasmid of 

WHCV (WHCV 15,704–16,846 bp in a pLB vector) led to positive amplification (brown 

curve). b, Amplification curve of the DNA standard for WHCV. From left to right, the DNA 

concentrations were 1.8 × 10
8
, 1.8 × 10

7
, 1.8 × 10

6
, 1.8 × 10

5
, 1.8 × 10

4
 and 1.8 × 10

3
. c, Linear 

fitted curve of Ct values to concentrations of the WHCV DNA standard. d, Quantification of 

WHCV in the BALF sample by real-time RT–PCR. The WHCV DNA standard was used as 

positive control (POS), water (NEG) and blank were used as negative controls. The 

amplification curve of the BALF sample is shown in green. 

Extended Data Fig. 5 | Maximum likelihood phylogenetic trees of the nucleotide 

sequences of the whole genome, and S and N genes of WHCV and related coronaviruses. 

Numbers (>70) above or below the branches indicate percentage bootstrap values. The trees 

were mid-point rooted for clarity only. The scale bar represents the number of substitutions per 

site. 

Extended Data Fig. 6 | Maximum likelihood phylogenetic trees of the nucleotide 

sequences of the 3CL, RdRp, Hel, ExoN, NendoU and O-MT genes of WHCV and related 

coronaviruses. Numbers (>70) above or below the branches indicate percentage bootstrap 

values. The trees were mid-point rooted for clarity only. The scale bar represents the number of 

substitutions per site. 
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Extended Data Fig. 7 | Analysis of RBD of the spike protein of WHCV coronavirus. a, 

Amino acid sequence alignments of RBD sequences of SARS-like CoVs. Three bat SARS-like 

CoVs—which could efficiently use the human ACE2 as receptor—had an RBD sequence of 

similar size to SARS-CoV. WHCV contains a single Val470 insertion. The key amino acid 

residues involved in the interaction with human ACE2 are marked by orange squares. By 

contrast, five bat SARS-like CoVs, including Rp3, which has previously been found not to bind 

to ACE2
14

—had amino acid deletions in two motifs (amino acids 433–437 and 460–472, 

highlighted by red boxes) compared with those of SARS-CoV.11 b, The two motifs (amino 

acids 433–437 and 460–472) are shown in red for the crystal structure of the RBD of the spike 

protein of SARS-CoV in complex with the human ACE2 receptor (PDB 2AJF). Human ACE2 

is shown in blue and the RBD of the spike protein of SARS-CoV is shown in green. Important 

residues in human ACE2 that interact with the RBD of the spike protein of SARS-CoV are 

marked. c, Predicted protein structure of the RBD of the spike protein of WHCV based on 

target–template alignment using ProMod3 on the SWISS-MODEL server. d, Predicted 

structure of the RBD of the spike protein of SARS-like CoV Rs4874. e, Predicted structure of 

the RBD of the spike protein of SARS-like CoV Rp3. f, Crystal structure of the RBD of the 

spike protein of SARS-CoV (green) (PDB 2GHV). Motifs that resemble amino acids 473–477 

and 460–472 of the spike protein of SARS-CoV are shown in red. 

Extended Data Fig. 8 | Amino acid sequence comparison of the N-terminal domain of the 

spike protein. Amino acid sequence comparison of the N-terminal domain of the spike protein 

of WHCV, bovine coronavirus (BCoV), mouse hepatitis virus (MHV) and human 

coronaviruses (HCoV OC43 and HKU1) that can bind to sialic acid and the SARS-CoVs that 

cannot (SZ3, WH20, BJ0 and Tor2). The key residues
16

 for sialic acid binding on BCoV, MHV, 

and HCoV OC43 and HKU1 are highlighted by orange squares. 

Extended Data Fig. 9 | Recombination events in WHCV. The sequence similarity plot of 

WHCV, SARS-like CoVs and bat SARS-like CoVs reveals putative recombination events. 
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